

Information Sheets

Terminology

Slag cement (Ground-granulated blast-furnace slag): A hydraulic cement formed when granulated blast-furnace slag is ground to a suitable fineness.

Granulated blast-furnace slag: The glassy, granular material formed when molten blast-furnace slag is rapidly chilled as by immersion in water. Also referred to as granules.

Blast-furnace slag: The non-metallic product, consisting essentially of silicates and aluminosilicates of calcium and other bases, which is developed in a molten condition simultaneously with iron in a blast-furnace.

Blast-furnace: A furnace used to reduce raw materials into molten iron. Combustion is forced with pressurized air.

Binary blended cement: A blended hydraulic cement consisting of portland cement with either a slag, a pozzolan, or a limestone.

Ternary blended cement: A blended hydraulic cement consisting of portland cement with either a combination of two different pozzolans, slag, and a pozzolan, a pozzolan, and a limestone, or a slag and a limestone.

Air-cooled blast-furnace slag: The material resulting from the solidification of molten blast-furnace slag under atmospheric conditions. Subsequent cooling may be accelerated by application of water to the solidified surface. (This material can be mined and crushed for use as aggregate in concrete or fill material, but is not cementitious.)

Expanded blast-furnace slag: The light weight cellular material obtained by controlled processing of molten blast-furnace slag with water, or water and other agents, such as steam or compressed air or both. (This is commonly used as lightweight aggregate and is not cementitious.)

Portland cement: A hydraulic cement produced by pulverizing portlandcement clinker and usually containing calcium sulfate.

Portland-limestone cement: A type of blended cement with a higher limestone content than straight portland cement.

Blended cement: A hydraulic cement produced by intergrinding portland cement clinker with other materials, or by blending portland cement with other materials, or by a combination of intergrinding and blending.

Portland blast-furnace slag cement: A blended cement consisting of an intimately interground mixture of portland cement clinker and granulated blast-furnace slag or an intimate and uniform blend of portland cement and fine granulated blast-furnace slag in which the amount of the slag constituent is within specified limits.

Hydraulic cement: A cement that sets and hardens by chemical interaction with water and is capable of doing so under water.

Pozzolan: A siliceous or siliceous and aluminous material, which in itself possesses little or no cementitious value but will in finely divided form and in the presence of moisture, chemically react with calcium hydroxide at ordinary temperatures to form compounds possessing cementitious properties.

Glass: An inorganic product of fusion, which has cooled to a rigid condi-

tion without crystallization.

Specifications: Standard Specification for Slag Cement for Use in Concrete and Mortars – ASTM $C989^1$

This specification covers three grades of finely ground granulated blast-furnace slag for use as a cementitious material in concrete and mortar. The material described in this specification can be used for blending with portland cement to produce a cement meeting the requirements of Specification C595; or 2) as a separate ingredient in concrete and mortar mixtures. The material may also be useful in a variety of grouts and mortars.

Standard Specification for Blended Hydraulic Cements - ASTM C595²

This specification pertains to five classes of blended hydraulic cement for both general and special applications, using slag cement, or a pozzolan or both, with portland cement, or portland cement clinker or slag with lime. This specification prescribes ingredients and proportions. A few of the most common types of blended cement using slag cement are:

- Type IS Portland blast-furnace slag cement (in which slag constituent is between 25% and 70% by mass)
- Type I(SM) Slag-modified portland cement (in which slag constituent is less than 25%)
- Type IT Ternary blended cement

Standard Performance Specification for Hydraulic Cement - ASTM C1157³

This specification covers hydraulic cements for both general and special applications. It is a specification that defines performance requirements for cement and does not restrict the composition of the cement or its constituents. The specification classifies cements by type, based on specific requirements for general use, high early strength, resistance to attack by sulfates, and heat of hydration.

Optional requirements are provided for the property of low reactivity with alkali-reactive aggregates.

*Guide to the Use of Slag Cement in Concrete and Mortar*⁴ (Reported by ACI Committee 233)

This report primarily addresses the use of slag cement as a separate cementitious material added along with portland cement in the production of concrete. Other slags derived from the smelting of materials other than iron ores are not discussed in this report. The reader should be aware that the material characteristics described in this report and the recommendations for use pertain solely to slag cement and not other forms or types of slag.

Specifications for Concrete Construction⁵ (Reported by ACI Committee 301)

This specification is a reference standard which the engineer or architect can make applicable to any building project by citing it in the project specifications. The user supplements it as needed by designating individual project requirements. The document covers materials and proportioning of concrete; reinforcing and prestressing steels; production, placing, and curing of concrete; and formwork design and construction. Methods of treatment of joints and embedded items, repair of surface defects and finishing of formed surfaces are specified. Separate chapters are devoted to slab construction and finishing, architectural concrete, mass concrete and

for acceptance of the structure, are included.

38800 Country Club Dr Farmington Hills, MI 48331

ed by ACI Committee 318)

members; and prestressed concrete.

(248) 848-3814 info@slagcement.org www.slagcement.org

materials and methods for constructing post-tensioned concrete. Provisions governing testing, evaluation and acceptance of concrete, as well as

Building Code Requirements for Structural Concrete and Commentary⁶ (Report-

The code portion of this document covers the proper design and construction of structural and plain concrete for buildings. The code has been writ-

ten in such form that it may be adopted by reference in a general building

and design; strength and serviceability; flexural and axial loads; shear and torsion; slab systems; walls; footings; precast concrete; composite flexural

inspection; materials; durability requirements; concrete quality, mixing, and placing; formwork; embedded pipes and construction joints; analysis

code. Among the subjects covered are: drawings and specifications;

Modern concrete often includes the use of supplementary cementitious materials (SCMs). These materials are often byproducts of other processes or natural materials.

References

1. ASTM C989/C989M-24 "Standard Specification for Slag Cement for Use in Concrete and Mortars," ASTM International, West Conshohocken, PA, 2024.

2. ASTM C595/C595M-23, "Standard Specification for Blended Hydraulic Cements," ASTM International, West Conshohocken, PA, 2023.

3. ASTM C1157/C1157M-23, "Standard Performance Specification for Hydraulic Cement," ASTM International, West Conshohocken, PA, 2023.

4. ACI 233R-17, "Guide to the Use of Slag Cement in Concrete and Mortar," American Concrete Institute, Farmington Hills, MI, 2017.

5. ACI 301-20, "Specifications for Concrete Construction," American Concrete Institute, Farmington Hills, MI. 2021.

6. ACI 318-19, "Building Code Requirements for Structural Concrete and Commentary," American Concrete Institute, Farmington Hills, MI, 2019.