

Slag Cements Role in Sustainable Concrete

Shawn Kalyn Sustainability & Technical Marketing Manager

Marketing Manager VCNA Jay Whitt

Technical Service Engineer

Heidelberg Materials

Copyright Materials

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited. © SCA

Member Company

Professor Doug Hooton

Overview of Performance Benefits

- Defining & the specifications
- Positive effects in concrete
- Durability benefits

Overview of Sustainable Benefits

- Goal to net zero using Slag and PLC
- Conveying lower carbon benefits
- Measurement tools to convey lower carbon concrete message

Agenda

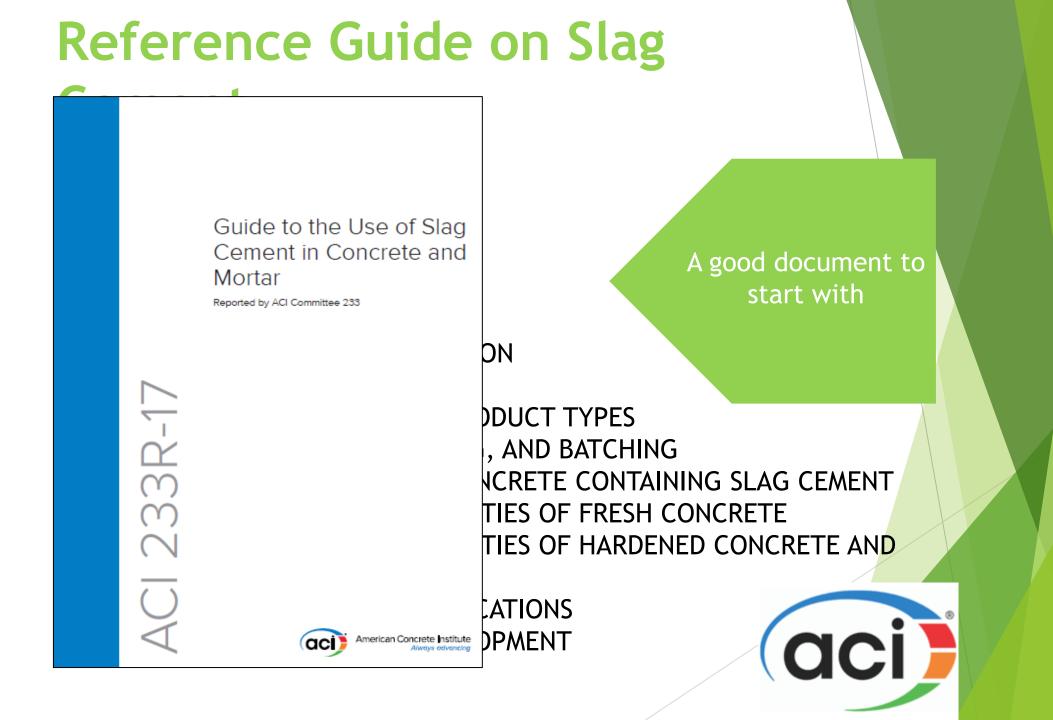
SCMs: Why Complicate the Mix?

(If portland cement has worked, why add Supplementary Cementitious Materials such as Slag cement?)

- To use up Ca(OH)2 byproduct of cement hydration to form more Calcium-Silica Hydrates (C-S-H)
- 2. To strengthen the **aggregate/paste bond** in the Interfacial Transition Zones (ITZ) around aggregate
- 3. To remove excess alkalis from pore water
- 4. To increase binding of chloride ions in aluminate phases
- 5. To increase sulfate resistance
- 6. To help lower heat of hydration.
- 7. To reduce "energy" & environmental footprint

Slag Cement Specifications

Slag Cement in Concrete


Standard Specifications

Slag cement as a constituent of blended cement

- ASTM C595 or AASHTO M 240 Standard Specification for Blended Hydraulic Cements
 - Type IS(35) = 65% PC + 35% Slag
 - Type IT(S25)(P15) = 60% PC + 25% Slag + 15% Pozzolan
 - Type IT(S25)(L10) = 65% PC + 25% Slag + 10% Limestone

Slag cement as an SCM in concrete

ASTM C989 or AASHTO M 302 Standard Specification for Slag Cement for Use in Concrete and Mortar or CAN/CSA-A3000-98 Cementitious Materials Compendium

PLC for Special Properties

Cement type OPC PLC PLC C595 C150 CSA (M 240) (M 85) A3000 General use GUL, IL GULb II, II(MS) IL(MS) moderate sulfate MSL resistance II(MH) IL(MH) moderate heat of hydration V IL(HS) high sulfate HSL resistance IV IL(LH) low heat of hydration high-early strength IL(HE) HEL, HELb

Cement modifiers

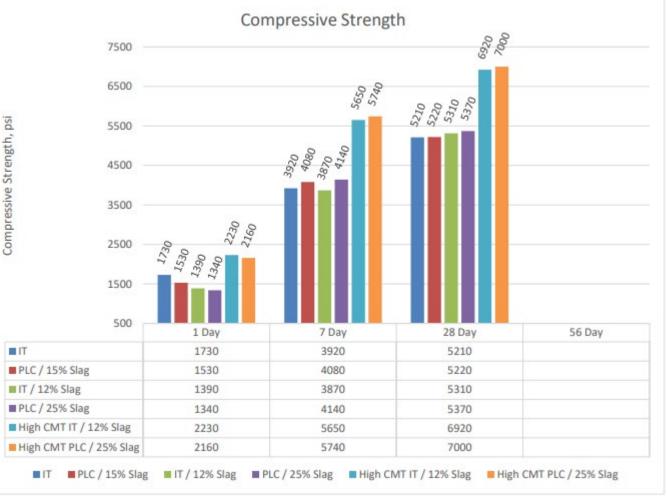
Sulfate resistance – MS, HS Sulfate-containing soils Sulfate-containing groundwaters Heat of hydration – LH, MH For mass concrete placements No counterparts in CSA High-early strength – HE For precast concrete New in August 2021

Next Evolution and transition towards zero

Current

PLC

Future


- IT Limestone blend with slag or scm
- ► High Early Limestone PLC HE
- New SCM's
 - Calcined clays
 - Volcanic ash
 - Ground glass
 - Harvested ash

ASTM C595 Ternary blend slag with limestone

*

Concrete compressive strength Legend

- Low strength mixes (505lb w/cm 0.56)
 - ▶ IT 15% slag 12% limestone
 - ▶ Plc 15% slag addition
 - ▶ IT 12% slag addition
 - Plc 25% slag addition
- High Strength mixes (611lb w/cm 0.46)
 - IT 15% slag 12% limestone
 - PIC 15% slag addition

EPD- envirocemplus vs envirocem

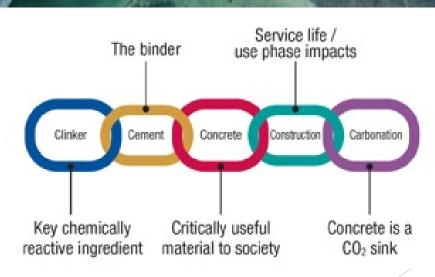
Core environmental impact indicators

A1-A3. Product

Indicator	DET Cement (Type IT (L12) (S15)) - 2022 data - final	DET Cement (Type IL) - 2022 data - final	Unit
Global warming potential	669.8	805.3	kg CO₂ eq.
Global warming potential, biogenic	0.3569	0.4532	kg CO₂ eq.
Depletion potential of the stratospheric ozone layer	1.729E-5	2.014E-5	kg CFC 11 eq.
Acidification potential of soil and water sources	5.315	6.402	kg SO₂ eq.
Eutrophication potential	0.6882	0.8423	kg N eq.
Photochemical oxidant creation potential	39.87	47.82	kg O₃ eq.
Abiotic depletion potential for non-fossil mineral resources	9.458E-5	1.110E-4	kg Sb eq.
Abiotic depletion potential for fossil resources	3398	4041	MJ, net calorific value

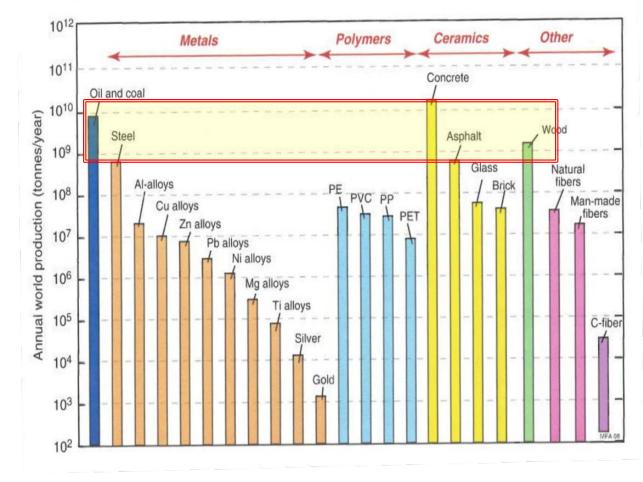
General Overview of Sustainable Benefits from Slag Cement Concrete

2050 Road maps to carbon Neutrality in concrete

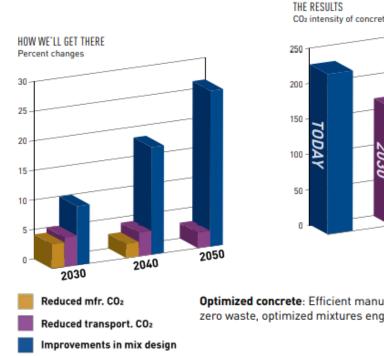


Global Cement and Concrete Association

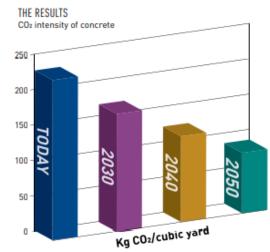
PCA. Since 1916 America's Cement Manufacturers"



A more sustainable world is Shaped by Concrete



Concrete is the most used material next to water



From Ashby 2009

2050 Road maps to carbon Neutrality in concrete CEMENT CONCRETE CONSTRUCTION

Optimizing concrete: Pushing performance

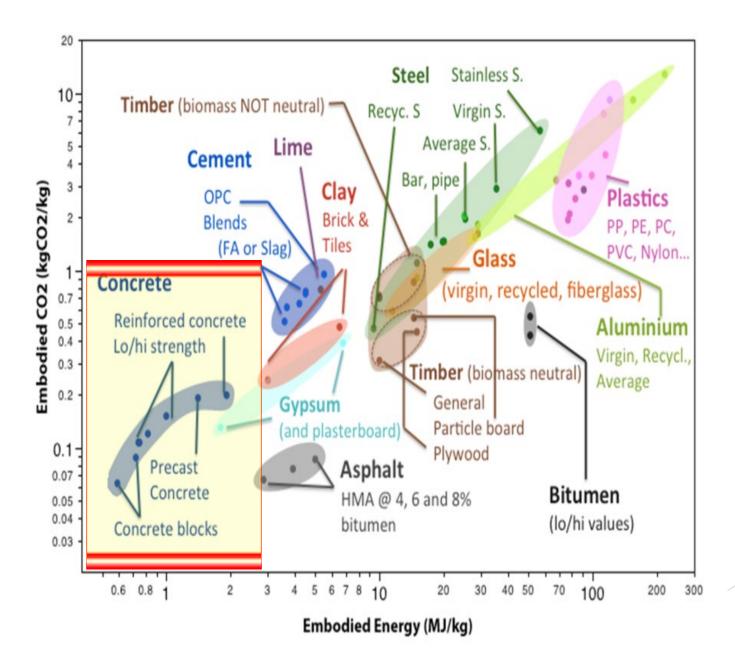
The binder

Optimized concrete: Efficient manufacturing and transportation, zero waste, optimized mixtures engineered for peak performance

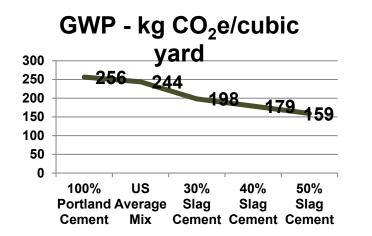
Source: PCA Roadmap to Carbon Neutrality pg 40

Critically useful

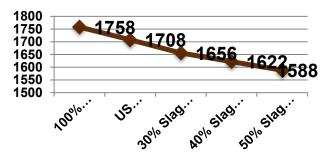
material to society

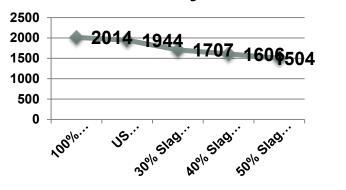

Service life /

use phase impacts


Understanding Carbon

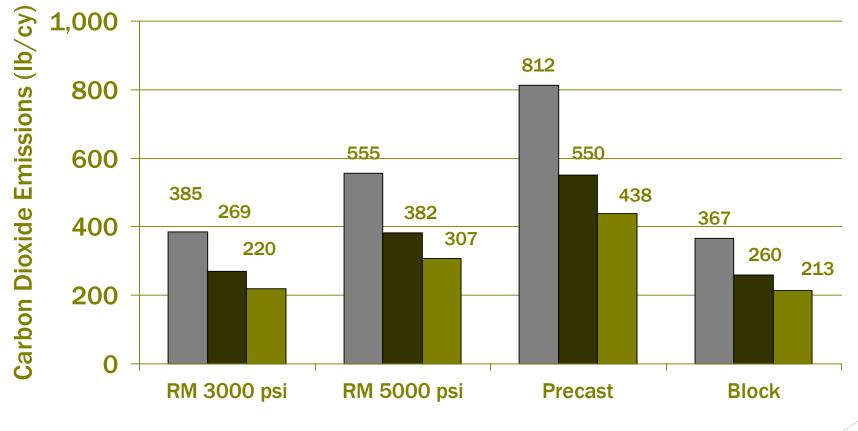
- Key Terms
 - Operational Carbon: Carbon load created by the use of energy to heat and power a building - 28% of total emissions
 - Embodied Carbon*: The greenhouse gasses that are emitted to construct structures and buildings - 11% of total emissions
 - **Carbon:** term used to indicate all greenhouse gas emissions, not just CO2
 - (EPD) Environmental Product Declaration: document that quantifies environmental information on the life cycle of a product to enable comparisons between products fulfilling the same function
 - (PCR) Product Category Rules: documents that provide rules, requirements, and guidelines for developing an product EPD
 - (LCA) Life Cycle Assessment: process to evaluate, assess, and improve the environmental burdens associated with a process, product, or activity by identifying and quantifying energy and materials used and wastes released to the environment.


*Some consider embodied carbon to include the entire life cycle of a building, including the operational carbon. As we are discussing building materials, we will focus on initial embodied carbon, or the impacts associated with extracting, manufacturing, and transporting materials to a jobsite.


LCA Results for Concrete

Non-Renewable Resource Use kg/cubic yard

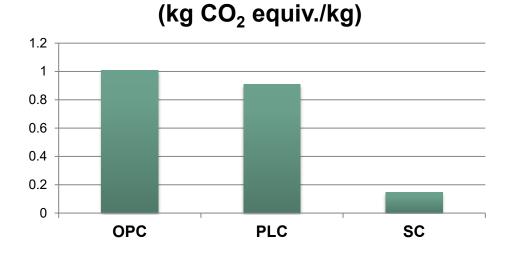
Primary Energy Consumption MJ/cubic yard


3,000 psi Mix Design

ASSOCIATION

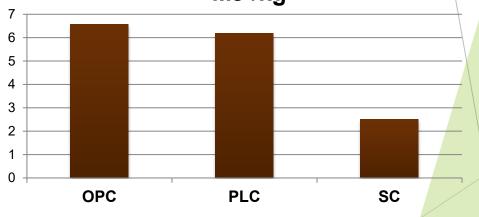
Possible savings...

- 100 kg CO₂
- 200 kg of resources
- 500 MJ of energy


Reduced CO₂ to Produce Concrete and Concrete Products

100% Portland 35% Slag 50% Slag

LCA Results


Slag Cement relative to Ordinary Portland Cement & Portland Limestone Cement

Global Warming Potential

OPC - 92% clinker, 3% limestone, 5% gypsum PLC - 82% clinker, 13% limestone, 5% gypsum

Primary Energy Consumption MJ /kg

What is PLC?

A greener cement option

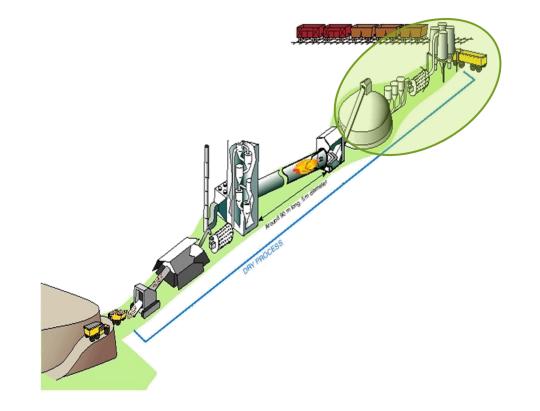
A blended cement with additional limestone content, optimized for performance

The easiest way to reduce your carbon footprint by about 10%

Suitable for buildings, bridges, pavements, geotechnical applications

Available throughout the U.S

www.greenercement.com for more information on:


- Specification help
- Case stud applications
- Technical papers
- Sustainable GWP tool for quick application calculations

Same durability. Same resilience. 10% carbon footprint reduction.*

Portland-limestone cement is engineered with a higher limestone content. PLC (Type IL) gives specifiers, architects, engineers, producers, and designers a greener way to execute any structure, paving, or geotech project, with virtually no modifications to mix design or placing procedures. All while maintaining the resilience and sustainability you've come to expect from portland cement concrete.

*Typically, PLC can reduce your carbon footprint by 10%.

What is PLC Cement

- ► What is PLC?
 - ▶ Type IL blended cement in ASTM C595/AASHTO M 240
 - ► 5% to 15% limestone by mass
 - Option to implement proven technology to obtain desired performance and improve sustainability of concrete

2030/2050 How do we accomplish this?

Use Smart

Do the materials you use need to be new? Are there recycled or salvaged materials that can be used instead of creating new materials?

Build Smart

Use materials, tools, and resources available to build the best product (outcome) that will also reduce the carbon impact. Life Cycle Assessment, and other modeling tools are available to compare the use of different materials

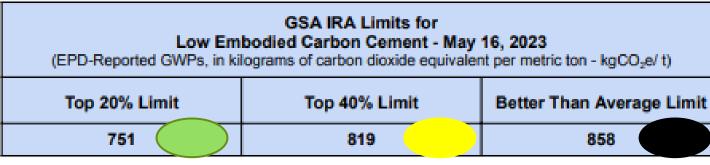
Buy Smart

Use Environmental Product Declarations as the "nutrition label" of a products environmental impact.

Sustainable Metrics

U.S. General Services Administration

Buying & Selling \vee 🛛 Real Estate 🖂	Policy & Regulations 🛛 🗸	Small Business 🗸	Travel 🗸	Shared Services 🗸	Techno
---------------------------------------	--------------------------	------------------	----------	-------------------	--------


Home > About Us > Newsroom > News Releases > GSA Announces Actions to Reduce Emissions from Building Materials

GSA Announces Actions to Reduce Emissions from Building Materials

February 15, 2022 ament GSA releases two requests for information to gather insights on sustainable, low-emission concrete and asphalt materials as to int of information to gather insights on sustainable, low-emission concrete and asphalt materials WASHINGTON — Today, as part of a governmentwide effort to strengthen American leadership on clean manufacturing, the U.S. General Services as to int of information to gather insights on sustainable, low-emission concrete and asphalt materials

Administration (GSA) announced actions to reduce emissions from building materials. GSA released two requests for information (RFIs) to gather current marketplace insights from industry, including small businesses, on the national availability of <u>concrete</u> and <u>asphalt</u> materials with environmental product declarations, low embodied carbon or superior environmental attributes. GSA will also participate in the first ever Buy Clean Task Force established by The White House Council on Environmental Quality to find ways to harness the federal government's massive purchasing power to support low-carbon materials.

 Construction product assemblies can also qualify for IRA funding where at least 80% of the assembly's total cost or total weight comprises IRA-qualifying material such as low embodied carbon cement.

Industry EPD's

- PCA industry Type I 922 kgC02e/MT
- PCA industry Type IL 844 kgC02e/MT

GSA top 20% limit

- Detroit MI Type IT (15s) 668 kgCO2e/MT
- Fleetwood PA type IS40 531 kgCO2e/MT
- Mississauga ON Type IL 742 kgCO2e/MT
- Mason City IA Type IL 687 kgCO2e/MT
- Ste. Genevieve MO Type IL 724 kgCO2e/MT
- Whitehall PA Type IT(25s) 682 kgCO2e/MT

GSA top 40% limit

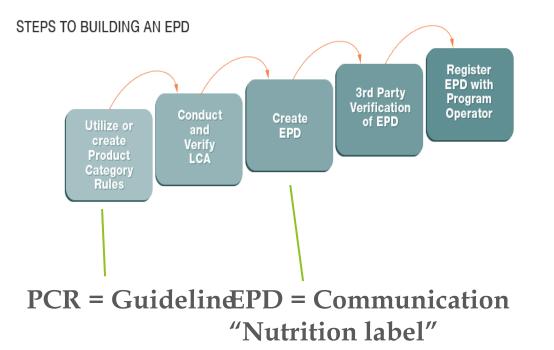
- Bath ON Type IL 771 kgCO2e/MT
- Detroit MI Type IL 796 kgCO2e/MT
- Miami FL Type IL 758 kgCO2e/MT
- Mojave CA Type IL 815 kgC02e/MT
- San Antonio TX Type IL 759 kgCO2e/MT
- Union Bridge MD Type IL 801 kgCO2e/MT

GSA better than average

- Fleetwood PA type IS40 531 kgCO2e/MT
- Picton ON Type IL 828 kgCO2e/MT
- Ragland AL Type IL 844 kgCO2e/MT
- Redding CA Type I/II
 820 kgCO2e/MT
- San Antonio TX Type IL 828 kgCO2e/MT
- Whitehall PA Type IL 847 kgCO2e/MT

GSA above the limit

- Alpena MI Type IL 984 kgCO2e/MT
- Charlevoix MI Type IL 995 kgCO2e/MT
- Greencastle IN Type IL 1023 kgCO2e/MT
- Harleyville SC Type IL 889 kgCO2e/MT
- Leeds AL Type IL 867 kgCO2e/MT
- Rapid City SD Type IL 893 kgCO2e/MT

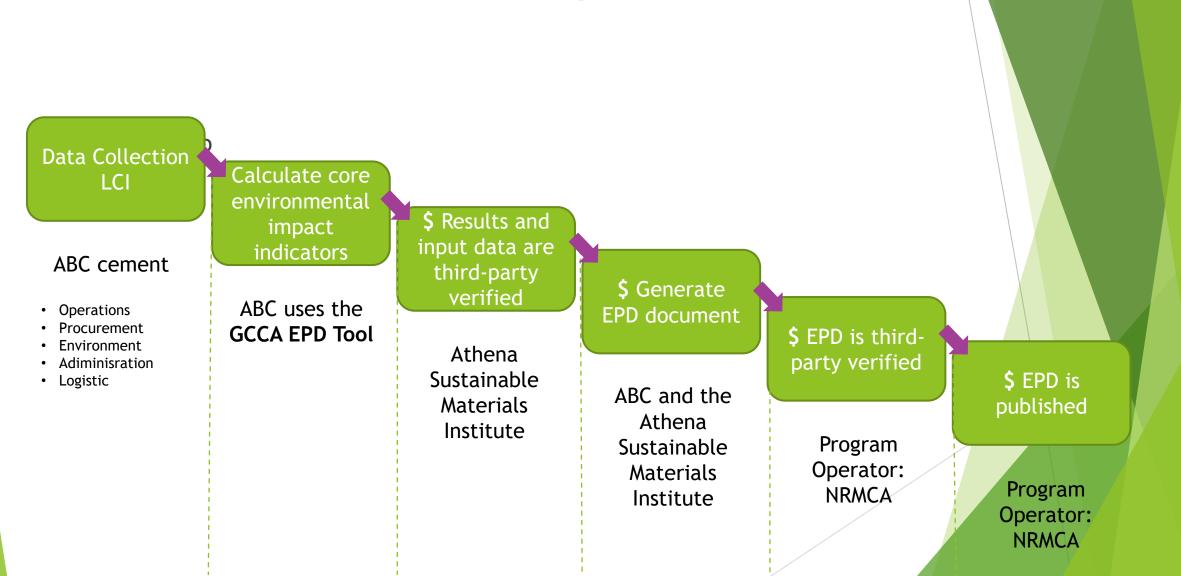

Owner's low carbon requirements The NYS Buy Clean Concrete guidelines

Effective June 2022: The Law is intended to increase the: use and innovation of low carbon concrete in state procurement projects.

Maximum GWP (kgCO2e) Limits for NYS Buy Clean Concrete guidelines (relevant for Phase 1 and Phase 2)

			nave rana rinave zy					
	Specified compressive strength (f'c in PSI) NYS Buy Clean Concrete GWP Limits (in kilograms of carbon dioxide equivalent per cubic yard - kgCO ₂ e/y ³) 0 - 2500 275					(EPD-Reported GWP	GSA IRA Limits for ad Carbon Concrete s, in kilograms of carbon cubic meter - kgCO ₂ e/ m	- May 16, 2023 dioxide equivalent per
	2501 - 3000	302			Specified concrete strength class			
	3001 - 4000 4001 - 5000	360			(compressive strength [fc] in pounds per square inch [PSI])	Top 20% Limit	Top 40% Limit	Better Than Average Limit
	4001 - 5000	434			oquare man (* only			
1	5001 - 6000	458			≤2499	228	261	277
	6001 - 8000	541			3000	257	291	318
					1000			
	2501 to 3000	410	289		4000	284	326	352
	3001 to 4000	456	313		5000	305	357	382
	4001 to 5000	503	338					
	5001 to 6000	531	356	_	6000	319	374	407
	6001 to 7000	594	394					
7	7001 and higher	657	433		≥7200	321	362	402
upt	o 3000 light weight	512	578		Add 30% to these num	phore for CW/D limite	where high early strong	ath1 concrete mixes
3001	4000 light weight	571	626				where high early stren	iguir concrete mixes
4001	L5000 light weight	629	675		are required for techni	cal reasons.		

What is an EPD?



EPD "Nutrition" Label

Your Building Product

Amount per Unit	
LCA IMACT MEASURES	TOTAL
Primary Energy (MJ)	12.4
Global Warming Potential (kg CO ² eq)	0.96
Ozone Depletion (kg CFC· 11 eq)	1.80E-08
Acidification Potential (mol H+ eq)	0.93
Eutrophication Potential (kg N ⁻ eq)	6.43E-04
Photo-Oxidant Creation Potential (kg 03 eq)	0.121

Your Product's Ingredients: Listed Here

EPDs - ABC Process example

4

EEE

E

(1)

Current Industry EPD's for OPC, GUL and Slag cement

Category Indicator	or Unit		Total				
TRACI v.2.1 Category Indicators		OPC	PLC	Slag			
Global Warming Potential (GWP)	kg CO₂eq	922	846	147.0			
Acidification Potential (AP)	kg N eq.	1.75	1.64	2.0			
Eutrophication Potential (EP)	kg O₂ eq.	1.02	0.94	0.33			
Smog Creation Potential (POCP)	kg O ₃ eq.	32.9	30.2	37.6			
Ozone Depletion Potential (ODP)	kg CFC -11 eq.	2.10E-05	2.17 E-05	2.4E-05			

LCA Results - Type OPC/PLC/Slag one metric ton - absolute basis

Slag Cement LCA Results -1 metric tonne

EPD Summary Results - One metric ton of slag cement

Category Indicator	Unit	Raw Material Supply	Transport	Manufacturing	Total	
		A1	AZ	A3		
Global warming potential	kg CO ₂ eq.	4.6	57.0	85	146.6	
Acidification potential	kg SO2 eq.	0.2	1.2	0.7	2.1	2015 EPD
Eutrophication potential	kg N eq.	0.01	0.05	0.21	0.27	
Smog creation potential	kg O₃ eq.	0.4	20.2	5.8	26.5	
Ozone depletion potential	kg CFC-11 eq.	4.21E-07	9.57E-06	6.9E-06	1.69E-05	
duction stage EPD Posults for			Ļ	1		

Production stage EPD Results for one metric ton of Slag Cement

Impact category and inventory indicators	Unit	A1, Extraction and upstream	A2, Transport to factory	A3, Manufacturin	Total g	- 20
Global warming potential, GWP 1001, AR5	kg CO ₂ eq	1.8	62.7	82.6	147.0	
Ozone depletion potential, ODP ²⁾	kg CFC-11 eq	2.9E-07	1.4E-05	1.0E-05	2.4E-05	
Smog formation potential, SFP2)	kg O3 eq	0.19	33.1	4.28	37.6	
Acidification potential, AP2)	kg SO ₂ eq	8.7E-03	1.7	2.6E-01	2.0	
Eutrophication potential, EP2)	kg N eq	2.9E-03	0.08	2.4E-01	0.33	

021 EPD

Environmental Initiatives LEED v4

MRc2: Building Product Disclosure and Optimization: Environmental Product Declaration (Possible 2 Points)

- OPTION 1. Environmental Product Declaration (EPD) (1 Point)
- Use at least 20 different permanently installed products sourced from at least five different manufacturers (v4.1 is now 10 epd's)
- Industry Wide EPD = ½ product, Product Specific Type III EPD = whole product (v4.1 industry 1pt)
- Product Specific Type III EPD = whole product (v4.1 TIII Specific 1.5 pts)

Company Specific

Example of low carbon concrete using slag cement -SCA EPD tool example

- Owner: Federal Agency Building 10 story concrete frame structure
 - Project Funding: Funded by the Infrastructure Investment and Jobs Act.
 - GSA low-emission concrete requirement for funding "GWP reduction aka lower carbon concrete"
 - **LEED New Construction Platinum Building**
 - General Contactor specialized in low carbon concrete awarded job
 - > Designer/ engineering firm likes slag cement as a lever to lower gwp
 - Concrete Contractor A: mass foundation concrete and concrete columns
 - Concrete Contractor Sub: post tension decks
 - Ready Mix Concrete Producer
 - NRMCA Industry EPD Participant
 - ▶ Cementitious Suppler A has industry EPDs for below products
 - ▶ PLC plus has product specific EPD
 - Slag Cement
 - **Cementitious Suppler B**
 - OPC no product disclosure

- MRC2 LEED EPD credit
 - V4 7.5/20 EPD (3 products)
 - ► NRMCA,SCA,PCA
 - ► Type III PLC
 - V4.1 13.5/10 (3 products)
 - NRMCA,SCA,PCA (1pt each)
 - ▶ Type III 1.5 pt

Cementitious solution options

Cement Suppler A

- Can support leed credit for supplying EPD's
- Support durability aspects for structure
- Support mass concrete heat of hydration
- Materials have environmental impact numbers a
- Ability to communicate project GWP reduction
 - SCA EPD tool Calculator for design
 - Concrete material specific EPD "information after

Cement Suppler B

- Project will need to use prescriptive measures
- Project will need to find other avenues for carbon reduction and leed credits

_			
D's		Cement limits for use with prescriptive compliance methods 19.07.050.1 and 19.07.050.2	GWP limits for use with performance compliance methods 19.07.050.3 and 19.07.050.4
	Minimum specified compressive strength f'c, psi (5)	Maximum ordinary Portland cement content , lbs/yd ³ (1, 2, 4)	Maximum Global Warming Potential, GWP, kg CO ₂ e /m ³
mbers a	up to 2500 (3,4)	362	260
.	2501 to 3000	410	289
uction (3001 to 4000	456	313
	4001 to 5000	503	338
	5001 to 6000	531	356
ion ofter	6001 to 7000	594	394
ion after	7001 and higher	657	433
[up to 3000 light weight	512	578
[30014000 light weight	571	626
	40015000 light weight	629	675

Job Site mixes

Option A OPC

Prescriptive (____)

- 410 lbs max for 3000 psi
- ▶ 531 lbs max for 5000 psi

Option B PLC

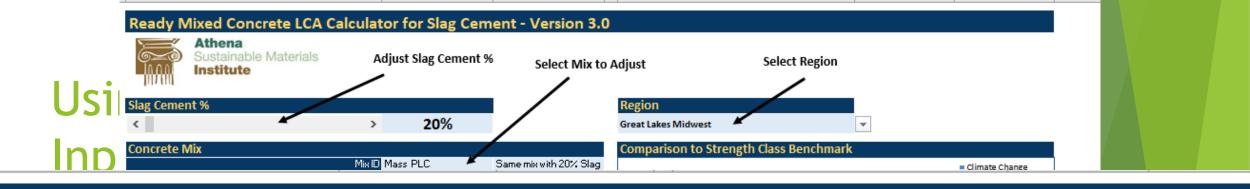
Option C PLC with Slag

- ▶ 65% slag in mass concrete
- ► 35% slag in columns

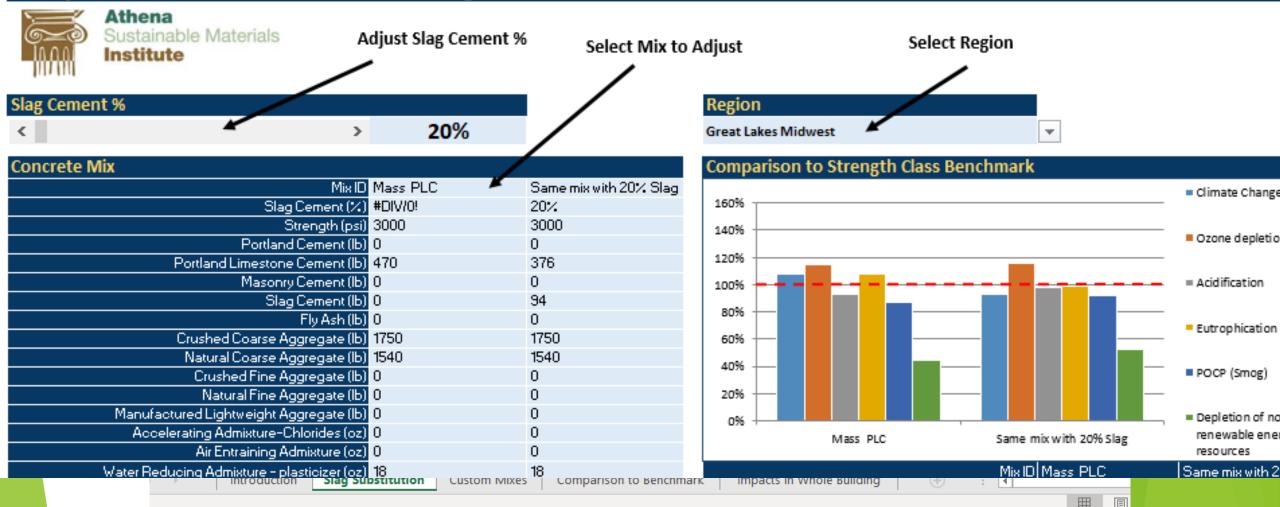
	Mix 1 3000 psi mass	Mix 2 5000 psi columns and floors	
Volume	6000 yds	7000 yds	
Cementitious	470 (410)	611 (531)	
Fine Aggregate	1540	1380	
Course Aggregate	1750	1750	
Water	250 lbs	250	
WR	18 oz	24 oz	
Super P		48 oz	

Registration is required to download content. Registration information is used by the SCA to

Available for free download starting today at www.slagcement.org


questions.

- Supporting Documents
- User Cautions
- Worksheet Instruction
- Slag Substitution
- Custom Mixes
- Comparison to Benchmark
- Impacts in Whole Building
- Calculator Support


Supporting Documents

The calculator is based off of LCA work previously completed by the Athena Institute for the National Ready Mixed Concrete Association as a part of Version 1 of their Industry-Wide EPD initiative. The complete documentation of Version 1 this LCA work can be found here: http://www.nrmca.org/sustainability/EPDProgram/#IndustryWideEPD.

*The Slag Cement Association is in the process of updating the Product Category Rules and Environmental Product Declaration for Slag Cement. Once this is done, an updated Life cycle Assessment Calculator will be created based off this updated information and the most recent NRMCA data.

Ready Mixed Concrete LCA Calculator for Slag Cement - Version 3.0

Ready Mixed Concrete LCA Calculator for Slag Cement - Version 3.0

Athena

Institute

Sustainable Materials

Using the SCA Cal Inputs

- On the customer mix tab enter custom mixes you would like to use.
- ► Type in Mix id
- Pick mix strength class
- Type in mix proportions
- Multiple mix classes can be entered in the custom mixes tab and mixes will be populated in the comparison to benchmark tab, impacts in whole building tab and a drop down selection in slag substitution tab.

oncrete Mix (per yd3)	-	1				
Mix ID	Mass OPC	Mass PLC	Mass slag	Floor OPC	Floor PLC	Floor slag
Strength for Benchmarking (psi)	3000	3000	3000	5000	5000	5000
Portland Cement (Ib)	470	0	0	611	0	0
Portland Limestone Cement (Ib)	0	470	235	0	611	458
Masonry Cement (Ib)						
Slag Cement (Ib)			235			153
Fly Ash (lb)						
Crushed Coarse Aggregate (Ib)	1750	1750	1750	1750	1750	1750
Natural Coarse Aggregate (Ib)	1540	1540	1540	1380	1380	1380
Crushed Fine Aggregate (Ib)						
Natural Fine Aggregate (Ib)						
Manufactured Lightweight Aggregate (lb)						
Accelerating Admixture-Chlorides (oz)						
Air Entraining Admixture (oz)						
Water Reducing Admixture - plasticizer (oz)	18	18	18	24	24	24
High Range Water Reducing Admixture - superplasticizer (oz)				48	48	48
Water (gal)	30.00	30.00	30.00	30.00	30.00	30.00

Enter Data for Custom Mixes on a per yd3 basis

Addi	tional Mix Opt	ions					
		Crushed Demolition	Concrete (lb)				
		Crushed Returned	Concrete (lb)				
		Fly Ash (p	ocessed) (lb)				
		Miner	al Fillers (lb)				
		Road Dust Control C	nemicals (lb)				
		Silica Fume (no pr	ocessing) (lb)				
		St	el Fibers (lb)				
		Synthe	tic Fibers (lb)				
	Accel	erating Admixture-Non (Chlorides (oz)				
	Introduction	Slag Substitution	Custom Mixes	Comparison to Benchmark	Impacts in Whole Building	+	+

Ready Mixed Concrete LCA Calculator for Slag Cement - Version 3.0

Athena

Sustainable Materials Institute

Using the SCA Calculator Comparison of Entered Mixes to Strength Class Benchmarks Review

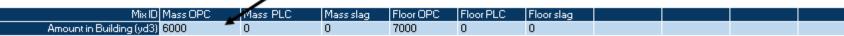
The comparison to benchmark tab will show the environmental impacts compared to the NRMCA Industry EPD.

1609	%							
1409	%							
1209	%							
1009								
809					_			
609	% –							
409	%							
209	% –							
09	%							
	1	2	з	4	5	6	7	
	Climate Change	Ozone deple	tion	Acidification	Eutrophication	POCP	(Smog)	Dep

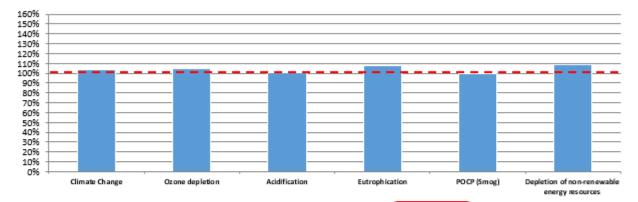
Mix in Graph	1	2	3	4	5	6
Mix ID	Mass OPC	Mass PLC	Mass slag	Floor OPC	Floor PLC	Floor slag
Strength (PSI) of Relevant Benchmark	3000	3000	3000	5000	5000	5000
Climate Change	118%	108%	71%	106%	97%	80%
Ozone depletion	112%	114%	119%	100%	103%	105%
Acidification	106%	93%	104%	100%	87%	92%
Eutrophication	116%	108%	84%	106%	99%	87%
POCP (Smog)	105%	87%	100%	96%	79%	85%
Depletion of non-renewable energy resources	112%	45%	63%	110%	43%	51%

Mix ID	Mass OPC	Mass PLC	Mass slag	Floor OPC	Floor PLC	Floor slag			
Climate Change (kg CO2-eq)	230.37	210.33	137.63	295.05	269.00	221.67			
Ozone depletion (kg CFC-11-eq)	6.21E-06	6.36E-06	6.60E-06	7.51E-06	7.70E-06	7.86E-06			
Acidification (kg SO2-eq)	0.65	0.57	0.64	0.79	0.69	0.73			
Eutrophication (kg N-eq)	0.30	0.28	0.22	0.37	0.35	0.31			
Photochemical Ozone Creation/Smog (kg O3-eq)	12.71	10.57	12.11	15.18	12.40	13.40			
Abiotic Depletion Potential ADPf (MJ)	373.25	319.85	333.96	514.94	445.52	454.71			
Abiotic Depletion Potential ADPe (kg Sb eq.)	1.89E-04	1.88E-04	1.75E-04	3.37E-04	3.36E-04	3.28E-04			
Use of renewable primary energy (MJ)	11.75	38.77	30.94	25.55	60.67	55.57			
Use of non-renewable primary energy (MJ)	1,406.18	563.35	785.23	1,791.34	695.67	840.13			
Fresh water consumption (m3)	0.42	0.41	0.33	0.51	0.91	0.83			
Introduction Slag Substitution Custom Mixes Comparison to Benchmark									

Using the SCA Ca Review


- The comparison to benchmark tab will show the environmental impacts compared to the NRMCA Industry EPD.
- On the Slag substitution tab select NRMCA region (column f, row 5). This will show the regional values for your area in this case the project is Michigan or Great Lakes.

Athe Susta Instit	ainable Materials	Adju	ust Slag Cement %	Select Mix to	Adjust	Select Region		
Slag Cement %					Region			
<		>	50%		Great Lakes Midwest 🛛 🖌		•	
Concrete Mix					Comparison to Strength	Class Benchmark		
		Mix ID Ma		ame mix with 50% Slag				Climate Change
		nent (%) #D		0%	160%			- different entenge
	Streng	gth (psi) <mark>-30</mark>	00 30	000	140%			- Berne danlation
	Portland Cem		0					Ozone depletion
	Portland Limestone Cem			35	120%			
	Masonry Cem		0		100%			= Acidification
		hent (lb) 0		35	80%			
	· · · · · · · · · · · · · · · · · · ·	Ash (lb) 0	0					Eutrophication
	Crushed Coarse Aggreg			750 540	60%			
	Natural Coarse Aggreg Crushed Fine Aggreg		40 IC 0	940	40%			POCP (Smog)
	Natural Fine Aggreg		0		20%			
Manu	ufactured Lightweight Aggreg		0					Depletion of non-
	coelerating Admixture-Chloric		0		0%	Same a	nix with 50% Slag	renewable energy
	Air Entraining Admixtu		0		Mass PLC	Saline n	nix with 50% Sidg	resources
Water R	Reducing Admixture - plastici:		18	}		Mix ID	Mass PLC	Same mix with 50% SI
h Range Water Reduci	cing Admixture - superplastici:	izer (oz) 0	0		Strength (PSI) o	f Relevant Benchmark		3000
		ter (gal) 30) 30	D		Climate Change		71%
						- Ozone depletion		119%
Additional Mix Op	otions					Acidification	93%	104%
ruuruona marop	Crushed Demolition Concr	rete (lb) 0	0			Eutrophication		84%
	Crushed Returned Concr		0			POCP (Smog)		100%
	Fly Ash (process		0		 Depletion of non-renewa			63%
	Mineral Fil		0		Depletion of homenetic	able energy resources	407.	037.
	Road Dust Control Chemic		0		Life Cycle Assessment Re	eulte		
			0		Life Cycle Assessment Re		Mass PLC	
	Silica Fume (no processi		0		C!:			Same mix with 50% SI
		pers (lb) 0	0			e Change (kg CO2-eq)		137.63
A	Synthetic Fib		0			oletion (kg CFC-11-eq)		0.00
Accelei	erating Admixture-Non Chloric		0			dification (kg SO2-eq)		0.64
	Corrosion Inhibiting Admixtu		0			trophication (kg N-eq)		0.22
	Shrinkage Reducing Admixtu		· · · · · ·		Photochemical Ozone Crea			12.11
	Water Retarding Admixtu		0			on Potential ADPf (MJ)		333.96
	Waterproofing Admixtu		0		Abiotic Depletion Poter			0.00
	Gre	ase (lb) <mark>0</mark>	U			ole primary energy (MJ)		30.94
						ble primary energy (MJ) ater consumption (m3)		785.23 0.33
					rresh w.	ater consumption (mb)	0.41	0.33


Ready Mixed Concrete LCA Calculator for Slag Cement - Version 3.0

the still all and all station as the strength of the state

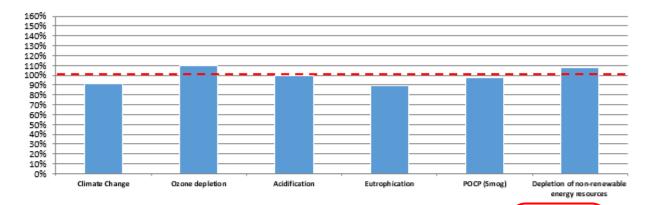
Enter amounts of custom mixes used in building

Comparison of Entered Mixes to Building Constructed with Benchmark Concrete

% of Impacts of Building with Default Concrete Climate Change 104% Ozone depletion 104% Acidification 101% Eutrophication 108% POCP (Smog) 100% Depletion of non-renewable energy resource 108%

Using original 100% OPC mix val OPC 470 lbs on mass OPC 611 on floors

Iding


Life Cycle Assessment Results Total Impacts	Impacts of I	Impacts of Individual Mixes										
Benchmark Custon Mi×ID Building Buildin		Mass PLC	Mass slag	Floor OPC	Floor PLC	Floor slag			<u> </u>			
Climate Change (kg CO2-eq) 8,264,168.39 8,599,7		Mass FLC	mass slag	2,065,345.41		Floor slag					ts of Building with I	
Ozone depletion (kg CFC-11-eq.) 9.35E-02 9.76E-				5.26E-02						Climate Cha Ozone deple		99% 95%
Acidification (kg SO2-eq) 38,915.95 39,136				5,543.36						Ozone depi Acidification		99%
Eutrophication (kg N-eq.) 5,318.12 5,717.3				2,617.88						Eutrophicati		100%
iotochemical Ozone Creation/Smog (kg O3-eq.) 704,534.81 703,91				106,235.38						POCP (Smo		98%
	542.96 2,239,517.25			3,604,610.69						Depletion of	non-renewable ener	gy resource 108%
Introduction Slag Substitution Cust	om Mixes 📔 Comp	parison to	Benchmark	Impacts	in Whole	Building	(+)		ewable			
	8	0.			(10 - 10 M	energy resou				
	Life Cycle Assessm	ont Docult	To	al Impacts	1	Impacts of	Individual	Mixos				
	Life Cycle Assessin	entresuit		and the second	Custom	inipacts of	li luiviuuai	wiixes				
			Mix ID Buil		Building	Mass OPC	Mass PLC	Mass slag	Floor OPC	Floor PLC	Floor slag	
	Clima	te Change (kj	g CO2-eq) <mark>8,2</mark>	64,168.39 8	3,211,776.50	1,230,073.62			1,829,530.08			
	Ozone de	epletion (kg Cl	FC-11-eq.) 9.3	5E-02 8	3.91E-02	3.39E-02			4.74E-02			
			(SO2-eq) 38		38,337.72	3,598.68			5,059.99			
Using prescriptive values			(kg N-eq.) 5,3		5,296.60	1,664.40			2,362.65			
	notochemical Ozone Cre				88,109.96	70,006.43			96,687.58			
OPC 410 lbs on mass	letion of non-renew able	energy resou	arces (MJ) 69,	356,415.02	74,997,194 55	5 2,156,228.66)		3,484,550.87			
ODC E21 lbs on floors col	impo					\sim				ノ		
OPC 531 lbs on floors, col												
		duction	Slag Subs	litution	Custom M	in Com	narican ta	Benchmark	In the state	in Mile al a	Building	+ : •

Introduction

Enter amounts of custom mixes used in building

Mix ID Mass OPC	Mass PLC	Mass slag	Floor OPC	Floor PLC	Floor slag		
Amount in Building (yd3) 0	o	6000	0	0	7000		

Comparison of Entered Mixes to Building Constructed with Benchmark Concrete

% of Impacts of Building with Default Co	ncrete
Climate Change	91%
Ozone depletion	110%
Acidification	99%
Eutrophication	89%
POCP (Smog)	98%
Depletion of non-renewable energy resource	107%

Using original PLC& Slag mix values PLC 235 lbs/ slg 235 lbs on mass PLC 458 lbs / slg 153 lbs on floors

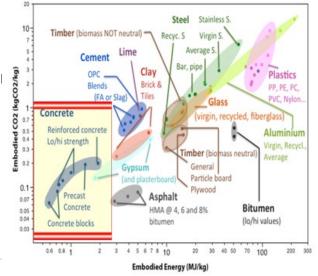
Life Cycle Assessment Results	Total Impacts		Impacts of Individual Mixes								
	Benchmark Building	Custom Building	Mass OPC	Mass PL	C Massislag	Floor OPC	Floor PLC	Floor slag		% of Impacts of Building with Default C Climate Change	Concrete 99%
Climate Change (kg CO2-eq)	8,264,168.39	7,529,645.22			825,793.49			1,551,678.94		Ozone depletion	95%
Ozone depletion (kg CFC-11-eq)	9.35E-02	1.02E-01			3.96E-02			5.50E-02		Acidification	99%
Acidification (kg SO2-eq)	38,915.95	38,619.09			3,827.33			5,112.71		Eutrophication	100%
Eutrophication (kg N-eq)	5,318.12	4,739.95			1,326.89			2,143.51		POCP (Smog)	98%
iotochemical Ozone Creation/Smog (kg O3-eq)	704,534.81	687,858.59			72,654.52			93,788.12		Depletion of non-renewable energy resour	o <mark>.</mark> 108%
letion of non-renewable energy resources (MJ)	69,356,415.02	74,543,085.20			2,003,732.70			3,182,937.47			

Slag Sub Mass concrete 33% GWP reduction using PLC and Slag Floor and Columns 15% GWP reduction

		Benchmark	Custom								
	Mix ID	Building	Building	Mass OPC	Mas <mark>s PLC</mark>	Mass slag	Floor OPC F	loc <mark>r PLC</mark>	Floor slag		
	Climate Change (kg CO2-eq)	8,264,168.39	8,211,776.50	1,230,073.62			1,829,530.08				
	Ozone depletion (kg CFC-11-eq)	9.35E-02	8.91E-02	3.39E-02			4.74E-02				
	Acidification (kg SO2-eq)	38,915.95	38,337.72	3,598.68			5,059.99				
Using prescriptive values	Eutrophication (kg N-eq)	5,318.12	5,296.60	1,664.40			2,362.65				
	iotochemical Ozone Creation/Smog (kg O3-eq)		688,109.96	70,006.43			96,687.58				
OPC 410 lbs on mass	letion of non-renew able energy resources (MJ)	69,356,415.02	74,997,194.55	2,156,228.66			3,484,550.87				
OPC 531 lbs on floors, columns											

Introduction Slag Substitution

Custom Mixes Comparison to Benchmark


Impacts in Whole Building

•

Sustainable Benefits "the Roadmap wrap up"

Concrete is a lower carbon material

- When working together designers, contractors and concrete suppliers can improve the full LCA of a project
- Support the use of industry EPD's and performance mixes for continuous improvement
- To get to zero emissions we need your help
 - Use of PLC and SCM like slag cement
 - Circular economy cradle to end of life solutions
 - Supporting the use of alternative fuels in clinker production to replace tradition fuels
 - Continuous use of EPD tools like
 - SCA LCA tool <u>www.slagcement.org</u>
 - PLC vs OPC tool <u>www.greenercement.com</u>
 - Adaptation use of GCCA tool <u>www.gcca.org</u>

Using and Improving Concrete by through the use of Slag Cement

In Summary...

Using slag cement at various replacement levels for portland cement improves:

- Consistency, workability and finishability of concrete
- Increases durability by
 - □ Long-term compressive and flexural strengths
 - □ Lowering permeability
 - □ Higher resistance to aggressive chemicals
- Environmental benefits
 - □ Recycled material
 - □ Less energy consumption, life cycle cost efficient
 - Pavements have greater reflectivity from lighter color

Thank You

QUESTIONS?

www.slagcement.org