

ABOUT THE ILLINOIS TOLLWAY

2024 CAPITAL PROGRAM HIGHLIGHTS

Tri-State Tollway (I-294)

Roadway widening and reconstruction

- Wolf Road to St. Charles Road
- Cermak Road to Flagg Creek

I-290/I-88 Interchange at I-294 reconstruction

88th/Cork Avenue Interchange at I-294 reconstruction

163rd Street Toll Plaza Improvements

I-490 Tollway

Interchange construction

- I-490/I-90
- I-490/IL 390
- I-490/I-294

1-490 Tollway advance work

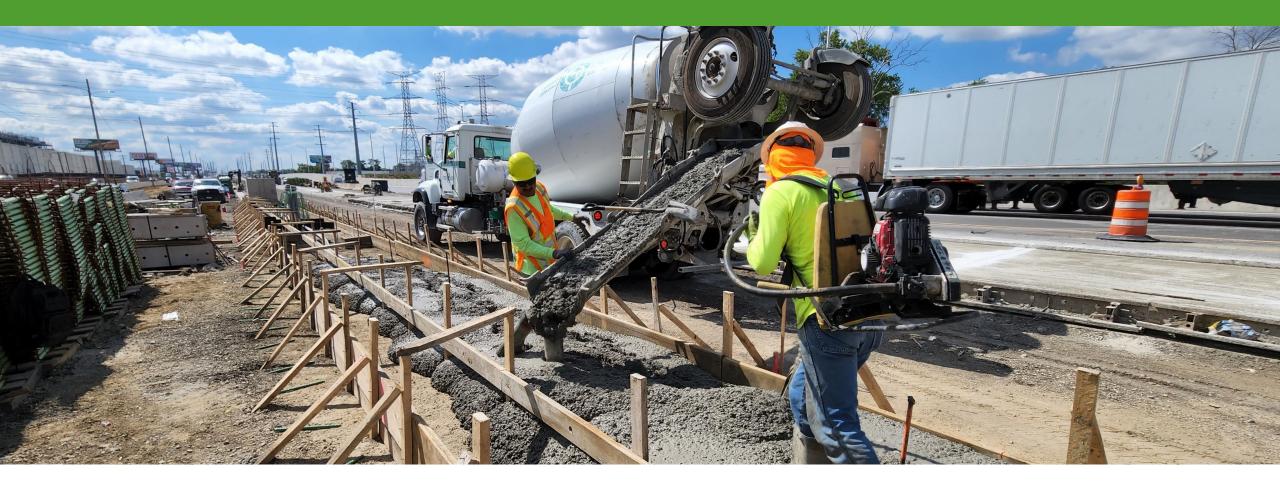
Canadian Pacific Railway
Bridge construction
(Bensenville Yard)

Systemwide

Grading improvements

Bridge and ramp repairs

ITS improvements


3

COMMITMENT TO SUSTAINABILITY

Since 2012, the Tollway has recycled

- Nearly 4,275,000 tons of recycled asphalt pavement
- More than 4,027,000 tons of recycled concrete
- Over 119,000 tons of slag cement
- More than 191,000 tons of fly ash
- Roughly 603,000 recycled tires
- Over 166,000 tons of recycled shingles

CONCRETE MIXTURES

CONCRETE TYPES

Illinois Tollway

- Class TL
- Class AX
- Class CAL
- Class HP
- Mass concrete

IDOT

- Class PV
- Class SI
- Class BS
- Class PC
- Class PS
- Class DS
- Class SC

CONCRETE MIXTURE TYPES

Class TL

Pavement

Class AX

- High early strength patching
- 2,500 psi in 16-24 hours for pavement
- 4,000 psi in 36-48 hours for structures

Class CAL

- Very high early strength patching
- 2,500 psi in 4 hours for pavement
- 4,000 psi in 6 hours for structures

Class HP

- High-performance concrete
- Bridge deck, approach slab, transition approach, moment slab

Mass concrete

- Minimum dimension of the concrete structure exceeds 5 feet
- ΔT ≤ 35°F
- $T_{max} \leq 160$ °F

GOALS FOR TOLLWAY CONCRETE MIXTURE DESIGNS

Strength

Adequate, but not excessively over-designed

Durability

- Freeze/thaw
- Shrinkage
- Chloride penetration resistance
- Alkali-silica reaction

Constructability

- Batching
- Workability

Performance-focused

- Reduce prescriptive requirements
- Encourage innovation

Sustainability

- Increased supplementary cementing material usage
- Recycled material

TESTING REQUIREMENTS FOR DESIGN APPROVAL

Parameter	Test Method	Mix Types
Compressive strength	AASHTO T 22	All
Slump loss	AASHTO T 119	HP, MC
Plastic air	AASHTO T 152	All
Length change	AASHTO T 160	AX, HP, MC
Ring shrinkage	ASTM C 1581	AX, HP, CAL
Cement Alkali (for ASR mitigation)	AASHTO T 105	All except CAL
Hardened air (to avoid Freeze Thaw testing)	ASTM C 457	All except CAL
Chloride penetration	AASHTO T 277 and T 358	AX, HP

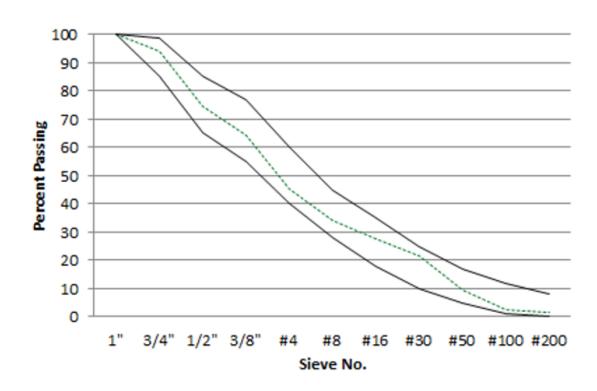
MIXTURE DESIGN AND APPROVAL PROCESS

Design

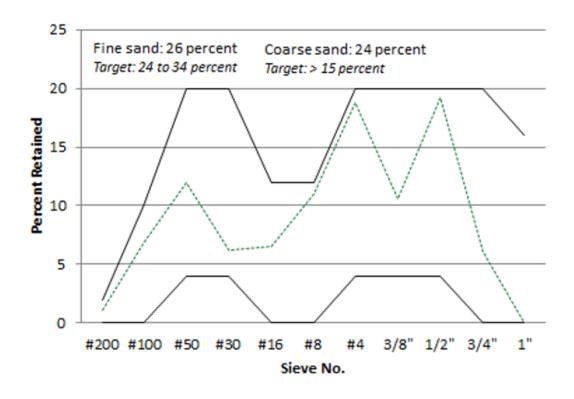
Lab Trial Batch Field Trial Batch

Approval

CONCRETE PAVEMENT


Class TL

- Ternary
 - 35 to 50 percent SCM
- Optimized gradation
 - Two coarse aggregates
 - Virgin aggregate
- Water/cementitious ratio during production
 - Design: -0.03, +0.00
- Compressive strength
 - 2,500 psi at 3 days
 - 3,500 psi at 14 days



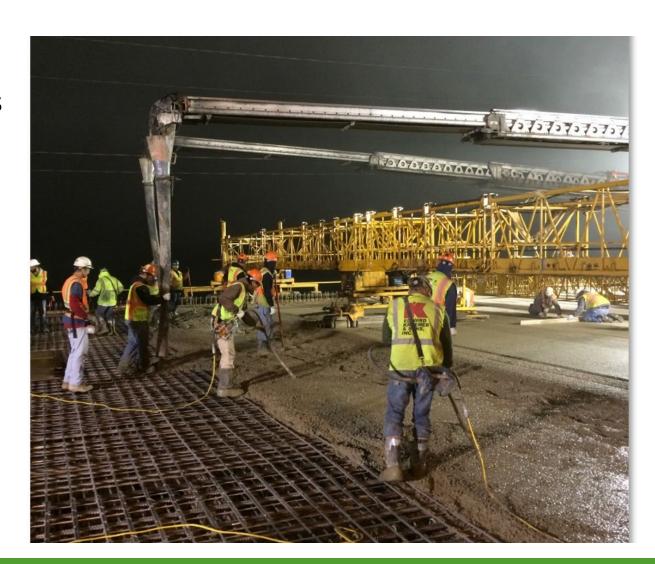
OPTIMIZED GRADATIONS

Class TL Combined Gradation

Tarantula Curve

CONCRETE PAVEMENT

Class TL – <u>typical</u> mix designs


- 560-620 lbs. total cementitious
- Type IL cement 100 percent of supply for the Tollway
- 35 to 40 percent SCM (three-day strength is important to contactors)
- SCM 50:50 to 30:70
- 70 percent is fly ash or slag cement, depending upon producer
- Fly ash supply is diminishing

BRIDGE DECK

Class HP

- Compressive strength: 4,000 psi at 14 days
- Trial batch
 - Freeze/thaw or hardened air
 - Slump loss
 - Linear shrinkage
 - Chloride penetrability
- Shrinkage
 - 1.5 gal./cy. SRA and < 605 lbs./cy total cementitious or ring shrinkage in trial batch
- Water/cementitious ratio during production
 - Design: -0.03, +0.00

BRIDGE DECK

Class HP – mix designs

- 580-620 lbs. total cementitious
- Type IL cement
- Typically 30 to 50 percent SCM (required seven-day wet cure)
- SCM primarily slag cement

MASS CONCRETE

Class MC

- Compressive strength
 - 1,000 psi at two days
 - 3,500 psi at 14 days
 - 6,000 psi at 28 days
 - 7,000 psi at 56 days (trial batch)
- Freeze/thaw or hardened air (trial batch)
- Slump loss (trial batch)
- Linear shrinkage (trial batch)
- Estimated temperature rise
- Equivalent cement ratio
- Water/cementitious ratio during production
 - Design: -0.03, +0.00

MASS CONCRETE

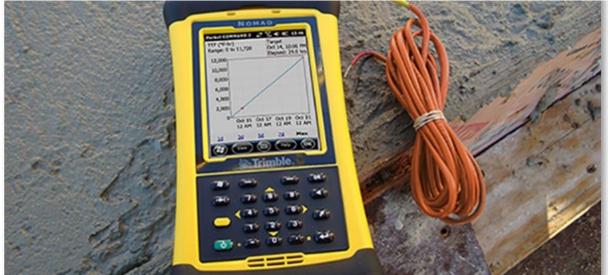
Class MC – mix designs

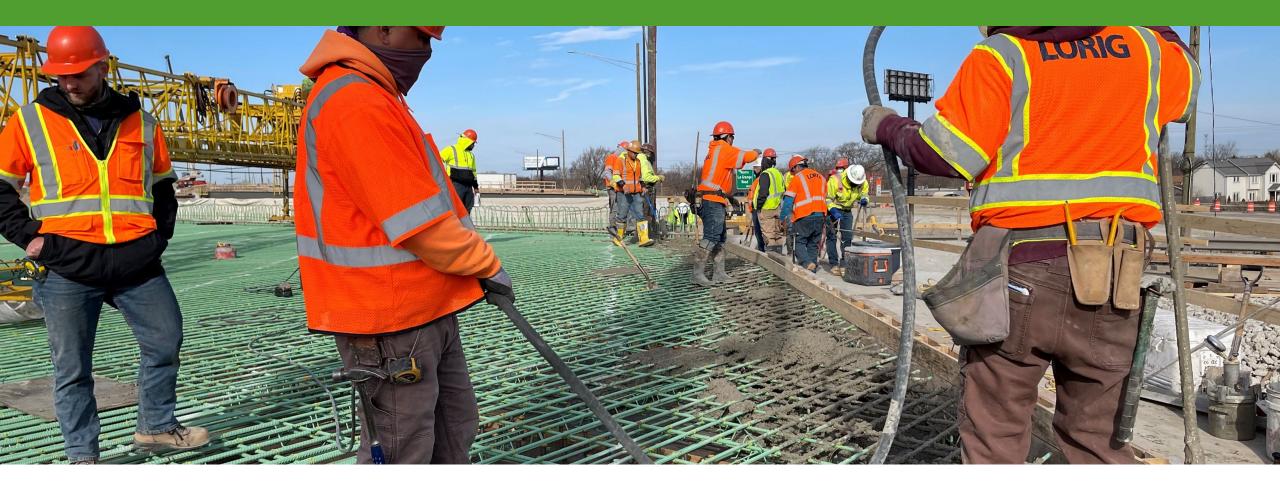
- 525-540 lbs. total cementitious
- Low heat, low strength gain
- Type IL cement
- 35 to 50 percent SCM
- SCM primarily slag cement

MATURITY METHOD

Pavement

Opening to traffic

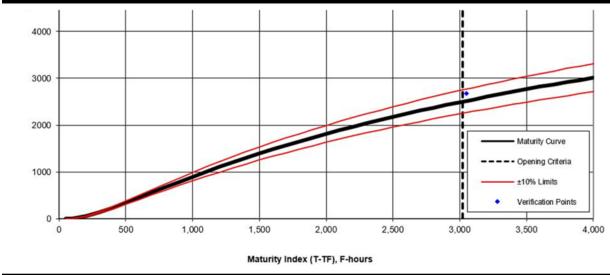

Structures


• Removing forms

Cold weather

Verify protection methods

UPDATES ON CONCRETE INITIATIVES

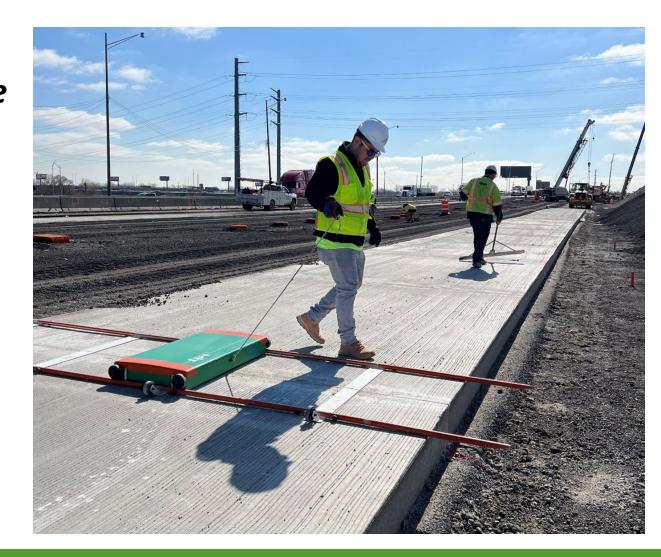

MATURITY FOR ESTIMATING IN-PLACE COMPRESSIVE STRENGTH

New specification

- Requires maturity to determine in-place concrete strength
- Maturity estimates in-place concrete strength from temperature probes
- Construction traffic allowed on pavement at 2,500 psi. In the summer this took 2-3 days
- Maturity also dictates when winter protection can be removed

Reception

- Widely accepted by construction managers and contractors due to its ability to accelerate schedules
- Shown to be accurate and reliable year-round


Date	Time	Age (hours)	Air Temp (deg F)	Temp Reading (deg F)	T-TF at age (deg F-hr)	Sum T-TF (deg F-hr)
9/25/23	11:14 AM	0.00		74.93	0	0
9/25/23	3:14 PM	4.00		83.86	190	190
9/25/23	7:14 PM	8.00		91.2	222	412
9/25/23	11:14 PM	12.00		88.47	231	643
9/26/23	3:14 AM	16.00		84.78	219	862
9/26/23	7:14 AM	20.00		81.88	205	1067
9/26/23	11:14 AM	24.00		80.17	196	1263

MIT SCAN FOR DOWEL ALIGNMENT

Significant amount of jointed plain concrete pavement quantities in *Move Illinois*

Dowel alignment tied to long-term pavement performance

Testing ensures best practices, low deficiency rate and quick adjustments

CONCRETE RESISTIVITY

Simple and easy test

Indicates resistance to chlorides, durability

Portland Cement Concrete Special Provision requires it be tested for mix qualification

Table 3 AASHTO T 358³ Chloride Ion Penetrability Classification

Chloride Ion Penetrability	Surface Resistivity, 4-by-8 in. cylinder (kΩ-cm)	
	a = 1.5	
High	<12	
Moderate	12-21	
Low	21-37	
Very Low	37-254	
Negligible	>254	

a – Wenner probe tip spacing

CONCRETE RESISTIVITY

2019-2021 Tollway Test Results

Mixture Type	Average 28- day (kΩ-cm)	Minimum 28- day (kΩ-cm)	Proposed 28- day Special Provision Limit (kΩ-cm)
TL	18.7	13.7	14.0
HP	22.9	17.0	19.0
AX	17.9	15.7	15.0

2023 Concrete Producer Test Results

Mixture Type	Average 28-day (kΩ-cm)	Minimum 28-day (kΩ-cm)
TL	20.6	16.4
HP	22.2	16.4
AX	17.4	14.0

CERTIFICATIONS

Production

NRMCA Plant and Truck Certification

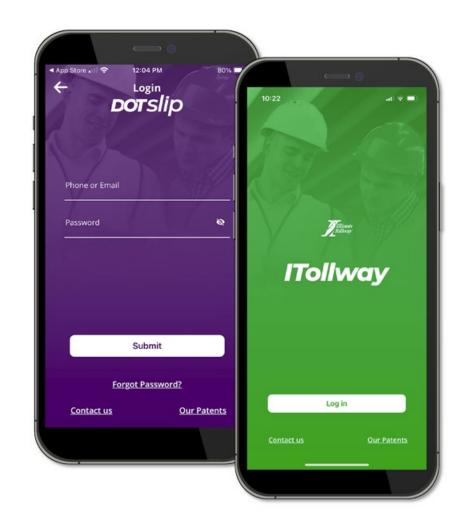
Personnel

ACI Concrete Strength Testing Technician

American Concrete Institute

Always advancing

E-TICKETING IMPLEMENTATION OVERVIEW


Being used for all contracts in 2024

Currently

- 45 contracts active and completed
- 53 producers/plants connected
- 230 users
- More than 45,000 tickets submitted in 2023

Tutorial videos for CMs and contractors

Accept tickets and assign pay items in the field

